
1

Q.NO.1

a. Explain the operating system.

Ans:- An operating system (OS) is a software that acts as an intermediary between
computer hardware and software applications. It provides a set of services and
functionalities that enable the efficient management of hardware resources and
the execution of various software programs. The operating system controls and
coordinates the activities of hardware components, manages memory and storage,
provides user interfaces, and facilitates communication between software
applications and hardware devices.

b. Describe how abstractions, standard interface and resource usage support
the system components of modern operating system.

Ans:- Abstractions, standard interfaces, and efficient resource usage are essential
concepts that support the system components of modern operating systems. Let's
break down each of these aspects and see how they contribute to the functionality
and efficiency of operating system components:

1. Abstractions: Abstractions provide a simplified and consistent view of
underlying complex hardware and software resources. They hide the intricate
details and complexities, allowing application developers and system
programmers to interact with the system in a more user-friendly and efficient
manner. Abstractions in modern operating systems include:

 - Process Abstraction

 - File Abstraction

 - Device Abstraction

2. Standard Interfaces: Standard interfaces define a set of rules and protocols
that enable components of the operating system to communicate with each other
and with external applications. These interfaces promote interoperability and
modularity, allowing different components to work together seamlessly. Examples
of standard interfaces include:

 - APIs (Application Programming Interfaces)

 - System Calls

 - Network Protocols

2

3. Resource Usage: Efficient resource usage is crucial for optimizing system
performance and ensuring fair allocation of resources among different processes
and applications. Modern operating systems manage resources like CPU time,
memory, disk I/O, and network bandwidth to ensure efficient utilization.
Techniques for resource usage support include:

 - Process Scheduling

 - Memory Management

 - I/O Management

 - Power Management

c. Discuss any FOUR (4) operating system managers, the responsibilities,
resources and relationships with each other in managing the operating
system.

Ans:- Operating systems are complex software that manage computer hardware
and provide an environment for other software to run. Let's discuss five key
components involved in managing an operating system:

1. Process Manager

 - Responsibilities: The process manager is responsible for creating, scheduling,
and terminating processes. It ensures fair and efficient allocation of CPU time to
various processes.

 - Resources: It manages CPU resources, process states, and execution order. It
maintains process control blocks (PCBs) containing process information.

 - Relationships: The process manager interacts with the CPU scheduler, memory
manager, and I/O manager to coordinate process execution, memory allocation,
and I/O operations.

2. Memory Manager

 - Responsibilities: The memory manager is responsible for managing the
system's memory resources. It handles memory allocation, protection, and
swapping.

 - Resources: It manages physical and virtual memory, keeps track of allocated
and free memory blocks, and handles memory paging or segmentation.

 - Relationships: The memory manager collaborates with the process manager to
allocate memory for processes and the file system manager to manage memory
used for file caching.

3

3. File System Manager

 - Responsibilities: The file system manager manages files and directories on
storage devices. It handles file creation, deletion, manipulation, and access
permissions.

 - Resources: It manages disk space, maintains file metadata (e.g., file size,
timestamps), and handles read/write operations.

 - Relationships: The file system manager interacts with the I/O manager for data
transfers, the process manager for file-related process operations, and the device
driver manager to communicate with storage devices.

4. Device Driver Manager

 - Responsibilities: The device driver manager manages communication between
the operating system and hardware devices. It provides a standardized interface
for various device types.

 - Resources: It manages device drivers, which are software modules responsible
for interacting with specific hardware components.

 - Relationships: The device driver manager collaborates with the process
manager for I/O operations, the memory manager to transfer data between
memory and devices, and the I/O manager for efficient data movement.

5. I/O Manager

 - Responsibilities: The I/O manager handles input and output operations
between the computer and its external environment. It buffers and schedules data
transfers to/from devices.

 - Resources: It manages I/O queues, data buffers, and coordinates data transfers
to minimize delays.

 - Relationships: The I/O manager interacts with the device driver manager for
device communication, the process manager for I/O-bound process handling, and
the memory manager to move data between devices and memory.

4

Q.NO.2

a. Describe THREE (3) types of scheduling in operating system.

Ans:- Scheduling in operating systems refers to the process of managing the
execution of tasks or processes in a system's CPU to achieve efficient resource
utilization and responsiveness. There are various scheduling algorithms that
determine the order in which processes are selected for execution.

Here are three types of scheduling algorithms:

1. First-Come, First-Served (FCFS) Scheduling: In this simple scheduling
algorithm, processes are executed in the order they arrive in the ready queue. The
first process that enters the queue is the first to be executed. FCFS is easy to
understand but can lead to poor average waiting times, especially if long processes
are followed by short ones (a phenomenon known as the "convoy effect").

2. Shortest Job Next (SJN) Scheduling: Also known as Shortest Job First (SJF)
scheduling, this algorithm selects the process with the smallest execution time
next. It aims to minimize the average waiting time by executing shorter processes
first. However, predicting the execution time accurately can be challenging, and
this algorithm might cause longer processes to wait indefinitely.

3. Round Robin (RR) Scheduling: Round Robin is a pre-emptive scheduling
algorithm where each process is assigned a fixed time quantum or time slice.
Processes are executed in a cyclic order for the duration of their time quantum. If
a process doesn't complete within its time quantum, it's moved to the end of the
queue. RR provides fairness and responsiveness, but its performance can degrade
with short time quanta and long processes.

b. Table 1 contains the processes, arrival time, CPU time and priority:

Table 1

Processes Arrival Time CPU Time Priority
P1 0 10 1
P2 1 15 2
P3 2 20 1
P4 3 25 4
P5 4 5 3

Based on the information in Table 1, draw the Gantt Chart for the following
process scheduling:

i. Priority Scheduling.

Ans:-

P1 P3 P2 P5 P4

 0 10 30 45 50 75

5

ii. Round Robin Scheduling with Time Quantum = 5 ms.

Ans:-

P1 P1 P3 P3 P3 P3 P2
0 5 10 15 20 25 30 35

P2 P2 P5 P4 P4 P4 P4 P4
35 40 45 50 55 60 65 70 75

c. Explain the concepts of thread in operating system.

Ans:- Threads are a fundamental concept in operating systems and provide a way
to execute multiple tasks concurrently within a single process. Here are 3 to 5 key
concepts related to threads in operating systems:

1. Thread vs. Process: Threads are smaller units of a process. While a process is
a self-contained program with its own memory space, threads share the same
memory space within a process. This allows threads to communicate and share
data more efficiently than separate processes.

2. Concurrency: Threads allow for concurrent execution of tasks within a single
process. Each thread can execute independently and perform its own set of
instructions, allowing for parallelism and potentially faster execution of tasks,
especially on multi-core processors.

3. Thread States: Threads typically go through different states during their
lifecycle, such as "running," "ready," and "blocked." The operating system
scheduler manages these states to ensure efficient CPU utilization. Threads can be
preemptively switched between these states to give the illusion of simultaneous
execution.

4. Synchronization: Because threads within a process share the same memory
space, they can access and modify the same data concurrently. This can lead to
data inconsistencies and race conditions. Synchronization mechanisms like
mutexes, semaphores, and condition variables are used to coordinate and control
access to shared resources, ensuring data integrity.

5. User-Level vs. Kernel-Level Threads: Threads can be managed at the user
level by the application itself or at the kernel level by the operating system. User-
level threads provide more control to the application but may not take full
advantage of multi-core processors. Kernel-level threads are managed by the OS
and can leverage multiple processor cores efficiently.

6

d. Assume that five philosophers are waiting to have their meal at dining
table with starvation rule. Discuss with a figure, the concepts of starvation in
this situation.

Ans:- Concepts of Starvation:

In the context of the dining philosophers problem, starvation refers to a situation
where a philosopher is unable to access the resources they need (forks in this case)
to perform their task (eating), even though other philosophers are continuously
accessing those resources.

1. Resource Allocation: The forks are resources that the philosophers need to eat.
If multiple philosophers try to pick up the same fork simultaneously, they will need
to wait until the fork becomes available. This resource allocation can lead to one
or more philosophers waiting for an indefinite amount of time, causing starvation.

2. Deadlock: In a system with improper synchronization mechanisms,
philosophers might end up in a deadlock. Deadlock occurs when every philosopher
picks up one fork and then waits indefinitely for the other fork. This situation
prevents any philosopher from eating, resulting in starvation for all philosophers.

3. Unequal Access: Even with proper synchronization, a situation might arise
where some philosophers consistently have more access to the resources than
others. For example, if one philosopher is always surrounded by empty seats, they
might have an easier time acquiring both forks, leading to other philosophers
starving.

4. Priority Inversion: Priority inversion occurs when a lower-priority
philosopher holds a resource that a higher-priority philosopher needs. If the
lower-priority philosopher doesn't release the resource in a timely manner, the
higher-priority philosopher might starve.

5. Fairness and Scheduling: Starvation can be mitigated through fair scheduling
mechanisms. Philosophers could be given a turn to eat in a round-robin fashion,
ensuring that each philosopher gets a fair chance to access the resources and eat.
This prevents any single philosopher from being perpetually starved.

7

Q.NO.3

a. Assume that the main memory has the following five fixed partitions with
the following sizes: 50KB, 250KB, 150KB, 450KB and 750KB (in order).

Draw an appropriate table on how the First-fit algorithm would allocate the
processes 210KB, 400KB, 140KB and 650KB (in order).

Ans:- First-fit algorithm

 50KB 250KB 150KB 450KB 750KB

 210KB 400KB 140KB
 40KB 50KB 610KB

650KB didn’t get to allocate memory.

b. Identify FOUR (4) characteristics of paging and segmentation in virtual
memory.

Ans:- Paging and segmentation are two memory management techniques used in
virtual memory systems to efficiently utilize physical memory. Here are four
characteristics of paging and segmentation:

1. Granularity

 - Paging: Paging divides both the physical and virtual memory into fixed-size
blocks called "pages." This fixed-size granularity simplifies memory management
but can lead to internal fragmentation.

 - Segmentation: Segmentation divides virtual memory into variable-sized
segments, which represent logical units of a program or data. This flexibility allows
for better memory utilization but can result in fragmentation.

2. Address Space Organization

 - Paging: In paging, the address space is divided into equal-sized pages, and these
pages may not correspond to the logical structure of the program. This can lead to
inefficient memory usage if some pages are not fully utilized.

 - Segmentation: Segmentation allows the address space to be divided into logical
segments, such as code, data, and stack segments. This reflects the program's
natural structure, making it easier to manage and reducing wasted memory.

3. Page Table vs. Segment Table

 - Paging: Paging typically uses a single page table that maps virtual page numbers
to physical frame numbers. The page table is relatively simple but can become
large for systems with a large address space.

8

 - Segmentation: Segmentation uses multiple segment tables, each corresponding
to a different segment type. These tables can be more complex as they need to
manage variable-sized segments efficiently.

4. Fragmentation

 - Paging: Paging can suffer from internal fragmentation, where a page may not
be fully utilized, wasting some memory space within each page.

 - Segmentation: Segmentation can suffer from external fragmentation, where
memory is fragmented between segments, making it challenging to allocate large
contiguous blocks of memory even if there is enough free memory in total.

c. Write about THREE (3) levels page table structure of Linux virtual
memory.

Ans:- Linux uses a three-level page table structure in its virtual memory
management system to efficiently map virtual addresses to physical addresses.
This hierarchical approach helps manage the translation process and conserve
memory resources. Here's a brief overview of the three levels:

1. Page Global Directory (PGD) or Page Global Directory Pointer (PGDP)

 - The first level of the page table structure.

 - PGD contains pointers to the Page Middle Directory (PMD) tables.

 - It divides the entire virtual address space into a set of smaller regions.

2. Page Middle Directory (PMD)

 - The second level of the page table structure.

 - PMD tables contain pointers to Page Tables (PTs) or Huge Page Tables (HPs).

 - They further refine the address translation process, narrowing down the search
for the appropriate page table.

3. Page Table (PT) or Huge Page (HP)

 - The third and final level of the page table structure.

 - PTs map individual pages of memory, whereas HPs are used for large
contiguous memory regions.

 - They provide the final translation of virtual addresses to physical addresses.

9

Q.NO.4.

a. Given the following information in Table 1:

Table 1

User File Name
Stud_1 Stud_2 Stud_3 Stud_4 Stud_5

Damia Read Read
Write

Read
Write

Owner
Read
Write

Execute

Read
Write

Kelvin Owner
Read
Write

Execute

Read
Write

Read
Write

Read

John Read
Write

Read Owner
Read
Write

Execute

Read Read
Write

Draw a matrix that shows the access control list of files Stud_1, Stud_2,
Stud_3, Stud_4 and Stud_5 for each user.

Ans:-

User File Name
Stud_1 Stud_2 Stud_3 Stud_4 Stud_5

Damia r rw rw rwx rw
Kelvin rwx rw rw r -
John rw r rwx r rw

b. Write about the concept of acyclic graph structure and file sharing in file
management.

Ans:- An acyclic graph structure, often referred to as a directed acyclic graph
(DAG), is a data structure composed of nodes and edges, where the edges have a
defined direction and the structure contains no cycles. In the context of file
management and file sharing, acyclic graph structures play a crucial role in
organizing and representing relationships between files and directories,
facilitating efficient file access and sharing. Let's delve into this concept further.

1. Organizing Files and Directories: In file management systems, files and
directories can be organized hierarchically, forming a tree structure. An acyclic
graph structure extends this by allowing for more complex relationships between

10

files and directories. Each node in the graph represents either a file or a directory,
and the edges represent relationships like containment or links.

2. Dependency Management: Acyclic graph structures are particularly useful
when dealing with dependencies between files or tasks. For example, in a software
development project, code files might depend on libraries or other code files.
Representing these dependencies as a DAG ensures that there are no circular
dependencies, preventing infinite loops and ensuring orderly execution.

3. Version Control Systems: Version control systems like Git employ acyclic
graph structures to track changes in code repositories. Each commit represents a
node in the graph, and the edges connect commits in chronological order, forming
a history of changes. This structure helps in branching, merging, and tracking the
development history of code.

4. File Sharing: Acyclic graph structures are relevant to file sharing in a
distributed environment. When multiple users collaborate on files or projects, the
DAG can be used to track changes, permissions, and relationships. It enables users
to share files with others, maintain version histories, and control access rights
efficiently.

5. Access Control: Access control lists (ACLs) can be implemented using DAGs to
manage permissions and sharing settings for files and directories. Users or groups
can be associated with nodes in the graph, determining who can access or modify
specific files or folders.

c. Describe the following types of file access:

i. Indexed Sequential File

ii. Direct File

Ans:-

i. Indexed Sequential File:- An Indexed Sequential File is a type of data storage
and retrieval method that combines elements of both sequential and indexed
access. It consists of a sequential data file in which records are stored in a specific
order, and an index is maintained to facilitate faster random access to these
records. This allows for efficient searching and retrieval of data while still
maintaining the sequential order of the file.

ii. Direct File:- A Direct File, also known as a random access file, is a type of data
file where records or data elements can be directly accessed using a unique
identifier, such as a record number or a key, without the need to read through the
entire file sequentially. This provides quick and efficient access to specific data
points within the file, making it suitable for applications that require frequent
random access operations.

11

Q.NO.5

a. Identify TEN (10) steps of after hardware interrupt completes.

Ans:- After a hardware interrupt completes, there are several steps that typically
occur to ensure the proper functioning of the system. These steps may vary slightly
depending on the specific operating system and hardware architecture, but here
are ten common steps:

1. Context Saving: The CPU saves the current state of the interrupted process,
including the program counter, registers, and other relevant information, onto the
stack or in a designated area of memory.

2. Interrupt Acknowledgment: The interrupt controller (e.g., the Programmable
Interrupt Controller or PIC) acknowledges the interrupt and sends an
acknowledgment signal to the interrupting device to confirm that the interrupt
request has been received.

3. Interrupt Dispatch: The interrupt handler or interrupt service routine (ISR)
associated with the interrupt is determined. The interrupt vector or table is used
to find the appropriate ISR.

4. Disable Interrupts: To prevent nested interrupts and maintain interrupt
handling integrity, the CPU often disables interrupts during the execution of the
ISR.

5. Execution of ISR: The CPU begins executing the ISR, which is a specific piece of
code written to handle the interrupt. This code performs tasks related to the
interrupt, such as reading data from the hardware device or processing data.

6. Processing Interrupt: The ISR processes the interrupt and may perform
actions like updating data structures, setting flags, or initiating other operations
based on the interrupt's purpose.

7. Restoring Context: After completing the ISR, the CPU restores the context of
the interrupted process, which includes reloading the saved program counter,
registers, and other state information from step 1.

8. Enabling Interrupts: The CPU re-enables interrupts if they were disabled
during the ISR execution to allow for the handling of other interrupts that might
occur concurrently.

9. Return from Interrupt: The CPU executes a return-from-interrupt (RTI) or
similar instruction to resume the interrupted process. This instruction typically
pops the saved context from the stack and sets the program counter to the address
where the interrupted code should continue.

10. Resuming Execution: The interrupted program continues its execution from
the point where it was interrupted, with all the processor state and registers
restored, as if the interrupt never occurred.

12

b. Differentiate between character-oriented device and blockoriented
device.

Ans:-

c. Draw with a label the FIVE (5) layers of I/O systems.

Ans:-

13

1. Application Layer: This is the top layer where user applications interact with
the I/O system. It includes software that initiates and manages I/O requests. Users
or applications request I/O operations through this layer.

2. File System Interface: This layer abstracts the underlying file system and
provides a standardized way for applications to access files and directories. It
manages file metadata, permissions, and file-level operations.

3. I/O Manager: The I/O manager is responsible for coordinating I/O operations
between the application layer and the lower layers. It queues and schedules I/O
requests, manages buffers, and handles error conditions.

4. Device Drivers: Device drivers are specific to each hardware device and serve
as intermediaries between the I/O manager and hardware. They translate high-
level I/O requests into low-level commands that the hardware can understand and
execute.

5. Hardware Layer: This is the lowest layer, consisting of the physical hardware
devices such as hard drives, network adapters, and other peripherals. It is
responsible for carrying out the actual data transfer and device control operations.

